Programme: Biomedical Engineering **Programme Level:** Undergraduate

Syllabus

1. Course name: Application of Ultrasound and Magnetism in Biomedicine

2. Course code: BIAP332965

3. Credits: 2 credits (3:0:8) (2 lecture periods, 0 lab period, 4 self-study periods per week)

4. Instructors

a. Chief lecturer: Assoc. Prof. Dr. Nguyen Thanh Hai

b. Co-lecturers: Dr. Duong Thanh Tai

5. Course Requirements:

Prerequisite course(s): None Previous course(s): None

6. Course Description

The course on the application of ultrasound and magnetism in biomedicine provides learners with essential information and an overview of some advanced instrumental uses of ultrasound and magnetism in engineering and biology. The content is divided into two sections: ultrasound applications (including the interaction of ultrasound with the matter, sonochemistry, non-destructive materials diagnosis, and the use of high-power ultrasound in treatment) and magnetic applications (including the basics of magnetism and magnetic materials, magnetic sensors, nanomagnetic medical applications, and biomagnetic fields).

7. Learning Outcomes (CLOs)

CLOs	Descriptions On successful completion of this course, students will be able to:	ELO(s) /PI(s)	Competency
CLO1	Demonstrate understandings of scientific knowledge to explain the applications of electromagnetic field and ultrasonography in biomedical engineering.	ELO1/PI1.2	R
CLO2	Address issues in ultrasonic and electromagnetic applications by analyzing, explaining, and reasoning	ELO2/PI2.1	R
CLO3	Collaborate and communicate effectively in a team while working on a project.	ELO5/PI5.1	R
CLO4	Compute and design ultrasound imaging and electromagnetic simulation software or hardware.	ELO7/PI7.3	R

8. Content outline

- The development of magnetic fields and ultrasonic applications
- The basis of ultrasound
- Non-destructive material diagnosis by ultrasound
- Application of high-power ultrasound in the treatment
- Basics of magnetism and magnetic materials
- Magnetic sensors
- Magnetic fields in biology

- Safe for Magnetic fields

9. Teaching Methods

- Presentation
- Teamwork

10. Assessment(s)

Grading scale: 10Assessment plan:

No.	Content	CLOs	Competency	Assessment methods	Assessment tools	Weighting %
Formative assessment						
1.	Signal of ultrasoundUltrasound systemMagnetic fields	CLO1	R	Assigments	Score sheet (online)	20
2.	 Describe the characteristics of ultrasonic signals Describe the characteristics of the magnetic field State the application of ultrasound Magnetic field application 	CLO4	R	Assigments	Score sheet /Rubric (online)	30
Summative assessment						50
3.	Students study English papers and delivery presentations	CLO2, CLO3	R	report	Rubric	50

11. Learning Materials:

- Textbook(s):
 - [1] Lecter give presentation material
 - [2] Jerrold T. Bushberg et. al., The Essential Physics of Medical Imaging, 2nd Ed., Lippincott Williams & Wilkins, 2002
- References:
 - [1] Cheeke J.D.N.: Fundamentals and Applications of Ultrasonic Waves, CRC Press 2002.
 - [2] BUSCHOW K. H. J., BOER F.R.: Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, 2004.
 - [3] Malmivuo A., Plonsey R.: Bioelectromagnetism, Oxford University Press, 1995.
 - [4] Kayvan N., Robert S., Biomedical Signal and Image Processing, Taylor and Francis Group, 2006.
 - [5] Introduction to the Mathematics of Medical Imaging, C.L. Epstein, Prentice Hall, 2003

12. General Information:

Academic Integrity

All students in this class are subject to HCMUTE's Academic Integrity Policy (http://sao.hcmute.edu.vn/) and should acquaint themselves with its content and requirements, including a strict prohibition against plagiarism. Any violations will be reported to the Faculty of Electrical and Electronic Engineering Dean's office.

Flexibility Notice

Any information in this syllabus (other than grading and absence policies) may be subject to change with reasonable advanced notice. Students need to regularly update the information of their registered class.

Intellectual Property

All contents of these lectures, including written materials distributed to the class, are under copyright protection from the HCMUTE's Intellectual Property Regulations. Notes based on these materials may not be sold or commercialized without the express permission of the instructor.

13. Approval Date: <dd/mm/yyyy>

14. Endorsement:

Dean	Head of Department	Chief Lecturer
Assoc. Prof. Dr. Nguyen Minh Tam	Assoc. Prof. Dr. Nguyen Thanh Hai	<full name=""></full>

15. Revision History:

1 st Revision: <dd mm="" yyyy=""></dd>	Lecturer:		
	Head of Department:		
	Assoc. Prof. Dr. Nguyen Thanh Hai		
2 nd Revision: <dd mm="" yyyy=""></dd>	Lecturer:		
	Head of Department:		